PLEASE REVIEW THE INFO  Experiment

PLEASE REVIEW THE INFO 

Experiment

Pendulum and the Calculation of g

Experiment

Pendulum and the Calculation of g

Lab 6 -Simple Pendulum

Discussion and review

A simple pendulum consists of a mass (“bob”) suspended from a light string of length
L. The bob is pulled sideways such as the string makes with the vertical direction an angle θ less than 150. When is released it oscillates back and forth within a vertical plane, with the period of the pendulum given by: T = 2π

symbol

Description


T

Period of a pendulum to complete one cycle


L

Length of string


g

Acceleration due to gravity: 9.81 m/s2


Procedure

The lab activity uses a simulation developed by the University of Colorado at Colorado Boulder. Click on the link below and choose “Intro”.

Simple Pendulum Click here

1. The length of the pendulum should be set to the following lengths: 0.25, 0.5, 0.75 and 1m.

2. For each length, set the pendulum in motion by displacing the pendulum bob sideways such as the string makes

100 with the vertical direction
.

3. Start the timer when the strings appear to be aligned with the angle. Wait for next alignment and count first oscillation, the next alignment will be the second oscillation and so on. Count out a total of 10 oscillations and stop the timer precisely on the 10th oscillation. Record the total time elapsed for the 10 oscillations.

4. Repeat the previous step a total of 3 times and calculate the average of the three time trials

Tavg

5. Calculate the oscillation period,

T
, by dividing the average time by ten.

6. Calculate the acceleration due to gravity,

g
, for all lengths of the pendulum, using

T2
and the equation:

Length

(m)

Time [Trial 1]

(s)

Time

[Trial 2]

(s)

Time

[Trial 3]

(s)

Timeavg

(s)

T = Timeavg/10 (s)

T2 (s2)

g(m/s2)

gavg(m/s2)

1.00 m

0.75 m

0.50 m

0.25 m

Analysis

1. How is the period of the pendulum changing with length?

2. Why did you measure 10 periods of the pendulum instead of just 1?

3. What do you think the effect of the changing mass will be on the pendulum’s period if the length is fixed? Why?

You can check your assumption by running the simulation. Keep the angle to less than 150.

4. Calculate your percentage error as compared to the accepted value for
g, which is 9.81 m/s2.

% error = [
experimental value – accepted value] × 100

accepted value

2

www.HOLscience.com ©Hands-On Labs, Inc.

1

www.HOLscience.com ©Hands-On Labs, Inc.

image1.png

image4.png

Share This Post

Email
WhatsApp
Facebook
Twitter
LinkedIn
Pinterest
Reddit

Order a Similar Paper and get 15% Discount on your First Order

Related Questions

WEEK 4 Select the state where you plan to practice as a nurse practitioner and/or nurse leader and investigate the state’s policies on access to

WEEK 4 Select the state where you plan to practice as a nurse practitioner and/or nurse leader and investigate the state’s policies on access to maternal health resources such as contraceptive care including abortion for women with and without health insurance coverage. Identify what are the state’s infant and maternal mortality rates and discuss the

Utilizing the attached file, conduct an article review of the scholarly journal article.  Additionally, the review of the journal article is an evaluation

Utilizing the attached file, conduct an article review of the scholarly journal article.  Additionally, the review of the journal article is an evaluation of the article’s strengths, weaknesses, and validity. You will use this to decide the article’s value through your explanation, interpretation, and analysis. Use the required elements below as headings

KRYSTEL BERGHER PROFILE Accomplished Customer Service Expert committed to the delivery of quality service. Professional and Ethical.

KRYSTEL BERGHER PROFILE Accomplished Customer Service Expert committed to the delivery of quality service. Professional and Ethical. Seeking to assist or help a new customer service department in creating and achieving the much-needed customer service goals. CONTACT ADDRESS: 15851 Southwest 139th Place, Miami FL 33177. PHONE: 305-992-6010 EMAIL: [email protected] om